Abstract:In the present study the advantages of multistage oxygen delignification was explored in comparison with a single-stage process at the same level of total caustic charge. A pine kraft pulp with kappa number of 65 (Kn 65 ) was bleached with the focus on the effect of NaOHcharge distribution on Kn, pulp yield, and selectivity of oxygen delignification. The effect of initial chelation with ethylenediaminetetraacetic acid (EDTA) and interstage pulp treatment with peroxymonosulfuric acid (Px) were also investigated. It is shown that the chelated pulp with high Kn may be delignified in three stages to Kn 15 , but at an unacceptable reduction in pulp viscosity and yield. In contrast, interstage treatment of the chelated pulp with Px at a total charge of 2% active oxygen (based on pulp) in combination with three stages of oxygen delignification enables Kn reduction to about 15 at acceptable viscosity and total yield advantage of about 0.5% (based on wood) compared to an oxygen-delignified kraft pulp with Kn 24 derived from the same pine wood chips.