The effect of heavy sputtering and of neutron irradiation simulated by displacement damaging with of 20 MeV W 6+ ions on the optical properties of tungsten mirrors was studied. Ar + ions with 600 eV of energy were used as imitation of charge exchange atoms ejected from fusion plasma. The ion fluence dependence of the surface topography and the optical properties of polycrystalline, recrystallized tungsten (grain size 20 -100 µm) were studied by optical microscopy, interferometry, reflectrometry and ellipsometry. Furthermore, after sputtering in total a layer of 3.9 μm in thickness, the orientation and the thickness of the eroded layer of many individual grains was determined by electron backscattering diffraction and confocal laser scanning microscopy. Concluding from the obtained data the neutron irradiation, at least at the damage level would be achieved in ITER, has not to make an additional contribution in the processes developing under impact of charge exchange atoms only.