Peanut allergy (PNA) is the major cause of fatal and near-fatal anaphylactic reactions to foods. Traditional immunotherapy using peanut (PN) protein is not an option for PNA therapy because of the high incidence of adverse reactions. We investigated the effects of s.c. injections of engineered (modified) recombinant PN proteins and heat-killed Listeria monocytogenes (HKLM) as an adjuvant on anaphylactic reactions in a mouse model of PN allergy. PN-allergic C3H/HeJ mice were treated s.c. with a mixture of the three major PN allergens and HKLM (modified (m)Ara h 1–3 plus HKLM). The effects on anaphylactic reactions following PN challenge and the association with Ab levels and cytokine profiles were determined. Although all mice in the sham-treated groups exhibited anaphylactic symptoms with a median symptom score of 3, only 31% of mice in the mAra h 1–3 plus HKLM group developed mild anaphylaxis, with a low median symptom score of 0.5. Alterations in core body temperature, bronchial constriction, plasma histamine, and PN-specific IgE levels were all significantly reduced. This protective effect was markedly more potent than in the mAra h 1–3 protein alone-treated group. HKLM alone did not have any protective effect. Reduced IL-5 and IL-13, and increased IFN-γ levels were observed only in splenocytes cultures from mAra h 1–3 plus HKLM-treated mice. These results show that immunotherapy with modified PN proteins and HKLM is effective for treating PN allergy in this model, and may be a potential approach for treating PNA.