Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Some six or so physiological systems, essential to normal mammalian life, are involved in poisoning; an intoxication that causes severe injury to any one of them could be life threatening. Reversible chemical reactions showing Scatchard-type binding are exemplified by CO, CN- and cyclodiene neurotoxin insecticide intoxications, and by antigen-antibody complex formation. Haemoglobin (Hb) molecular biology accounts for the allosteric co-operativity and other characteristics of CO poisoning, CN- acts as a powerful cytochrome oxidase inhibitor, and antigen binding in a deep antibody cleft between two domains equipped with epitopes for antigen-binding groups explains hapten-specific immune reactions. Covalent chemical reactions with second-order (SN2) kinetics characterize Hg and Cd poisonings, the reactions of organophosphates and phosphonates with acetylcholinesterase and neurotoxic esterase and the reaction sequence whereby Paraquat accepts electrons and generates superoxide under aerobic conditions. Indirect carcinogens require cytochrome P450 activation to form DNA adducts in target-organ DNA and cause cancer, but a battery of detoxifying enzymes clustered with the P450 system must be overcome. Thus, S-metabolism competes ineffectively with target DNA for reactive vinyl chloride (VC) metabolites, epoxide hydrolase is important to the metabolism and carcinogenicity of alfatoxins and polycyclic aromatic hydrocarbons (benzo[a]pyrene, etc.), and the non-toxic 2-naphthylhydroxylamine N-glucuronide acts as a transport form in 2-naphthylamine bladder cancer. VC liver-cancer pathogenesis is explicable in terms of the presence of the glutathione S-transferase detoxifying system in hepatocytes and its absence from the fibroblastic elements, and of the VC concentrations reaching the liver by different administrative routes. In VC carcinogenicity, chemical reactions give imidazo-cyclization products with nucleoside residues of target DNA, and in benzene leukaemia, Z,Z-muconaldehyde forms cyclic products containing a pyrrole residue linked to purine. Increased HbCO concentrations reduce the O2-carrying capacity of the blood, and the changed shape of the O2-Hb dissociation curve parallels disturbance in O2 unloading. CN- acts on electron transport and paralyses respiration. In telodrin poisoning, preconvulsive glutamine formation abstracts tricarboxylic acid intermediates incommensurately with normal cerebral respiration. Antigen-antibody complexing depletes the antibody titre, available against infection. At high doses of Cd, Cd-thionein filtered through the kidneys is reabsorbed and tubular lesions produced. Some organophosphate insecticides promote irreversible acetylcholinesterase phosphorylation and blockade nerve function, and others react with neurotoxic esterase to cause delayed neuropathy. The evidence for Paraquat pulmonary poisoning suggests a radical mechanism involving three interrelated cyclic reaction stages. The action of N- and O8 (O substituent in 6-position of the purine) demethylases explains deletion mecha...
Some six or so physiological systems, essential to normal mammalian life, are involved in poisoning ; an intoxication that causes severe injury to any one of them could be life threatening. Reversible chemical reactions showing Scatchard-type binding are exemplified by CO, CN − and cyclodiene neurotoxin insecticide intoxications, and by antigen-antibody complex formation. Haemoglobin (Hb) molecular biology accounts for the allosteric co-operativity and other characteristics of CO poisoning, CN − acts as a powerful cytochrome oxidase inhibitor, and antigen binding in a deep antibody cleft between two domains equipped with epitopes for antigen-binding groups explains hapten-specific immune reactions. Covalent chemical reactions with second-order (S N 2) kinetics characterize Hg and Cd poisonings, the reactions of organophosphates and phosphonates with acetylcholinesterase and neurotoxic esterase and the reaction sequence whereby Paraquat accepts electrons and generates superoxide under aerobic conditions. Indirect carcinogens require cytochrome P450 activation to form DNA adducts in target-organ DNA and cause cancer, but a battery of detoxifying enzymes clustered with the P450 system must be overcome. Thus, Smetabolism competes ineffectively with target DNA for reactive vinyl chloride (VC) metabolites, epoxide hydrolase is important to the metabolism and carcinogenicity of aflatoxins and polycyclic aromatic hydrocarbons (benzo[a]pyrene, etc.), and the non-toxic 2-naphthylhydroxylamine N-glucuronide acts as a transport form in 2-naphthylamine bladder cancer. VC liver-cancer pathogenesis is explicable in terms of the presence of the glutathione S-transferase detoxifying system in hepatocytes and its absence from the fibroblastic elements, and of the VC concentrations reaching the liver by different administrative routes. In VC carcinogenicity, chemical reactions give imidazo-cyclization products with nucleoside residues of target DNA, and in benzene leukaemia, Z,Z-muconaldehyde forms cyclic products containing a pyrrole residue linked to purine. Increased HbCO concentrations reduce the O # -carrying capacity of the blood, and the changed shape of the O # -Hb dissociation curve parallels disturbance in O # unloading. CN − acts on electron transport and paralyses respiration. In telodrin poisoning, preconvulsive glutamine formation abstracts tricarboxylic acid intermediates incommensurately with normal cerebral respiration. Antigen-antibody complexing depletes the antibody titre, available against infection. At high doses of Cd, Cd-thionein filtered through the kidneys is reabsorbed and tubular lesions produced. Some organophosphate insecticides promote irreversible acetylcholinesterase phosphorylation and blockade nerve function, and others react with neurotoxic esterase to cause delayed neuropathy. The evidence for Paraquat pulmonary poisoning suggests a radical mechanism involving three interrelated cyclic reaction stages. The action of Nand O' (O substituent in 6-position of the purine) demethylases explains deleti...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.