Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGF1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.Astrocytes are the source of a diverse group of molecules that are required for synapse formation, function, and maintenance in neurons (1-7). Thrombospondin (TSP) 3 is a member of the astrocyte-derived intercellular signaling components that have been implicated in synaptogenesis and other neuronal glial interactions of the developing brain (8 -17). In addition, synaptic plasticity and other neuroadaptations involving astrocyte neuron interactions are thought to play a role in reward learning and addiction (18). Some chronic morphine-responsive genes (Homer1, PSD-95, and synaptotagmin1) may subserve the long lived neuronal and behavioral plasticity observed in regions of the mesolimbic reward system, and they are involved in synaptogenesis (19 -26).TSPs are multidomain, multimeric glycoproteins that are secreted into the extracellular matrix of many cells and serve as bridging molecules in cell-cell interactions (27,28). First discovered in platelet ␣-granules and secreted upon platelet activation, the superfamily of TSPs modulate varied functions of cell signaling and cell adhesion in a broad array of cell types. The five TSP genes are expressed in the CNS and peripheral nervous system where they play important roles in neural development. T...