Practical environmental and energy applications of the electrochemical reduction of CO 2 to chemicals and fuels require far more efficient and selective electrocatalysts beyond the only working material Cu, but the wealth of experimental data on Cu can serve to validate any proposed mechanisms. To provide design guidelines, we use quantum mechanics to predict the detailed atomistic mechanisms responsible for C 1 and C 2 products on Cu. Thus, we report the pH dependent routes to the major products, methane and ethylene, and identify the key intermediates where branches to methanol, ketene, ethanol, acetylene, and ethane are kinetically blocked. We discovered that surface water on Cu plays a key role in the selectivity for hydrocarbon products over the oxygencontaining alcohol products by serving as a strong proton donor for electrochemical dehydration reductions. We suggest new experiments to validate our predicted mechanisms.