Background
Garlic (Allium sativum L.) is the second most widely cultivated Allium which is mainly grown in temperate regions and used as a flavoring agent in a wide variety of foods. Garlic contains various bioactive compounds whose metabolic pathways, plant–pathogen interactions, defensive genes, identify interaction networks, and functional genomics were not previously predicted in the garlic at the genomic level. To address this issue, we constructed two garlic Illumina 2000 libraries from tissues of garlic clove and leaf.
Results
Approximately 43 million 125 bp paired-end reads were obtained in the two libraries. A total of 239,973 contigs were generated by de novo assembly of both samples and were compared with the sequences in the NCBI non-redundant protein database (Nr). In total, 42% of contigs were matched to known proteins in public databases including Nr, Gene Ontology (GO), and Cluster Orthologous Gene Database (COG), and then, contigs were mapped to 138 via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). In addition, a number of regulatory genes including the CCHC (Zn) family, followed by WD40, bromodomain, bZIP, AP2-EREBP, BED-type (Zn) proteins, and defense response proteins related to different conserved domains, such as RGA3, NBS-LRR, TIR-NBS-LRR, LRR, NBS-ARC, and CC-NBS-LRR were discovered based on the transcriptome dataset. We compared the ortholog gene family of the A. sativum transcriptome to A. thaliana, O. sativa, and Z. mays and found that 12,077 orthologous gene families are specific to A. sativum L. Furthermore, we identified genes involved in plant defense mechanisms, their protein–protein interaction network, and plant–pathogen interaction pathways.
Conclusions
Our study contains an extensive sequencing and functional gene-annotation analysis of A. sativum L. The findings provide insights into the molecular basis of TFs, defensive genes, and a reference for future studies on the genetics and breeding of A. sativum L.