Materials based on the chalcopyrite structure can form semiconductors with a wide range of properties. CuInX 2 , where X is S, Se, or Te, can be tuned by doping on sites such as the Cu site or the In site to change the amount of carrier concentration. One use for semiconductors such as CuInX 2 , with a wide array of doping options, is for thermoelectric applications. Thermoelectric materials are materials with the ability to convert thermal energy such as waste heat into useful electrical energy. By correctly doping CuInX 2 , it could allow for a high thermoelectric figure of merit, ZT, to be achieved. In this study, 0, 0.1%, 1%, and 5% Cd or Ni was used to dope on the In site or the Cu site, respectively. All samples showed single phase chalcopyrite structures. CuInS 2 showed n-type behavior throughout the doping range with both Cd and Ni acting as n-type dopants. CuInTe 2 showed p-type behavior throughout the doping range with Cd acting as an electron donor and Ni acting as an electron acceptor. CuInSe 2 showed n-type behavior, which changed to p-type due to both Cd and Ni acting as acceptors. It is possible that higher concentrations of Cd and Ni could still improve the thermoelectric properties of CuInS 2 with a maximum of ZT = 0.1 upon 5% Cd doping and of CuInSe 2 with ZT = 0.27 upon 5% nickel doping. CuInTe 2 was much more efficient with small amounts of Cd improving the ZT from 0.35 to 0.4.