Magnetically separable nanocatalysts were synthesized by incorporating ironnanoparticles on a mesoporous aluminosilicate (Al-SBA-15) through a mechanochemical grindingpathway in a single step. Noticeably, magnetic features were achieved by employing biomass wasteas a carbon source, which additionally may confer high oxygen functionalities to the resultingmaterial. The resulting catalysts were characterized using X-ray diffraction, X-ray photoelectronspectroscopy, transmission electron microscopy, scanning electron microscopy, porosimetry, andmagnetic susceptibility. The magnetic nanocatalysts were tested in the selective oxidative cleavagereaction of isoeugenol and vanillyl alcohol to vanillin. As a result, the magnetic nanocatalystsdemonstrated high catalytic activity, chemical stability, and enormous separation/reusabilityqualities. The origin of catalytic properties and its relationship with the iron oxide precursor wereanalyzed in terms of the chemical, morphological, and structural properties of the samples. Suchanalysis allows, thus, to highlight the superficial concentration of the iron entities and the interactionwith Al as key factors to obtain a good catalytic response.