Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.Cells 2020, 9, 878 2 of 31 the predominant isoform in brain and has an earlier expression onset than MeCP2 e2 [6]. The two isoforms are commonly considered as functionally equivalent, yet recent evidence shows that MeCP2 e1 plays a role in neuronal maturation [7] and is more relevant for RTT [8][9][10]. In view of the fact that MeCP2 e2 isoform was the first to be known and a much larger body of literature pertains to this isoform, we will, throughout, use amino acid coordinates from MeCP2 e2 isoform.Both variants include two functionally characterized domains: the methyl-CpG binding domain (MBD) and the transcriptional repression domain (TRD). The MBD specifically recognizes and binds 5-methylcytosine (5mC), while the TRD was found to bind multiple transcriptional repressors, thus silencing gene expression [11][12][13][14][15][16]. However, the TRD was also shown to bind to multiple transcriptional activators and activate gene expression [17][18][19]. More recently, the TRD has been narrowed down to the N-CoR/SMRT interacting domain (NID) [20]. A summary of the best characterized domains of MeCP2 is shown in Figure 1. The DNA binding properties of the different domains and the mechanism of DNA binding will be addressed in the next section.
MeCP2 DNA DindingEarly studies on MeCP2 characterized it as a protein being capable to bind to a single, symmetrically methylated CpG pair via the MBD domain spanning amino acids 89 -162 and thereby overlapping approximately twelve base pairs of DNA [4,21,22]. Later studies indicated that the N-terminal domain (NTD) enhanced DNA binding affinity via the MBD [23], while the intervening domain (ID), TRD and C-terminal domain (CTD) alpha showed methylation-independent DNA binding capabilities and CTD beta was proposed to bind to chromatin, but not to naked DNA [23,24]. Furthermore, three AT-hook-like domains were identified within the ID, TRD and CTD alpha domains (AT-hook 1, aa 184-195; AT-hook 2, aa 264-273; AT-hook 3, aa 341-364). The AT-hook motif is a short motif binding to the minor groove of AT-rich DNA via the core consensus amino acid sequence RGRP [25]. These methylation-independent DNA binding capabilities allow MeCP2 to bind to different sites on the DNA at the same time, thus, possibly contributing to genome-wide chromatin organization. With the exception of the MBD, MeCP2 was shown to be mostly an intrinsically disordered protein. Upon binding to DNA, though, increased secondary structure in ID and TRD were observed [23]. The MBD is the only domain showing structurally conserved motifs, as it cont...