We study the John-Nirenberg space $$JN_p$$
J
N
p
, which is a generalization of the space of bounded mean oscillation. In this paper we construct new $$JN_p$$
J
N
p
functions, that increase the understanding of this function space. It is already known that $$L^p(Q_0) \subsetneq JN_p(Q_0) \subsetneq L^{p,\infty }(Q_0)$$
L
p
(
Q
0
)
⊊
J
N
p
(
Q
0
)
⊊
L
p
,
∞
(
Q
0
)
. We show that if $$|f|^{1/p} \in JN_p(Q_0)$$
|
f
|
1
/
p
∈
J
N
p
(
Q
0
)
, then $$|f|^{1/q} \in JN_q(Q_0)$$
|
f
|
1
/
q
∈
J
N
q
(
Q
0
)
, where $$q \ge p$$
q
≥
p
, but there exists a nonnegative function f such that $$f^{1/p} \notin JN_p(Q_0)$$
f
1
/
p
∉
J
N
p
(
Q
0
)
even though $$f^{1/q} \in JN_q(Q_0)$$
f
1
/
q
∈
J
N
q
(
Q
0
)
, for every $$q \in (p,\infty )$$
q
∈
(
p
,
∞
)
. We present functions in $$JN_p(Q_0) \setminus VJN_p(Q_0)$$
J
N
p
(
Q
0
)
\
V
J
N
p
(
Q
0
)
and in $$VJN_p(Q_0) {\setminus } L^p(Q_0)$$
V
J
N
p
(
Q
0
)
\
L
p
(
Q
0
)
, proving the nontriviality of the vanishing subspace $$VJN_p$$
V
J
N
p
, which is a $$JN_p$$
J
N
p
space version of VMO. We prove the embedding $$JN_p({\mathbb {R}}^n) \subset L^{p,\infty }({\mathbb {R}}^n)/{\mathbb {R}}$$
J
N
p
(
R
n
)
⊂
L
p
,
∞
(
R
n
)
/
R
. Finally we show that we can extend the constructed functions into $${\mathbb {R}}^n$$
R
n
, such that we get a function in $$JN_p({\mathbb {R}}^n) {\setminus } VJN_p({\mathbb {R}}^n)$$
J
N
p
(
R
n
)
\
V
J
N
p
(
R
n
)
and another in $$CJN_p({\mathbb {R}}^n) {\setminus } L^p({\mathbb {R}}^n)/{\mathbb {R}}$$
C
J
N
p
(
R
n
)
\
L
p
(
R
n
)
/
R
. Here $$CJN_p$$
C
J
N
p
is a subspace of $$JN_p$$
J
N
p
that is inspired by the space CMO.