Introduction: Chitosan is one of the natural polymers can generally consider as a biocompatible and biodegradable polycationic polymer, which has minimum immunogenicity and low cytotoxicity. Therefore, chitosan and its derivatives may represent potentially safe cationic carriers for use in gene delivery.Materials and Methods: Chitosan with 90.1 DD% obtained by deacetylation of chitin extracted from local shrimp shells. Graft copolymerization of L-lactide onto chitosan was carried out at room temperature by ring opening polymerization under a nitrogen atmosphere to prepare chitosan-g-poly (N-lactide) graft copolymer. It was obtained in good yield and characterized by FTIR. The samples purity and concentration were detected using both Nanodrop UV-spectroscopy and agarose gel electrophoresis techniques. The human heat shock proteins gene, hsp-70, was used as a model of human genes to study the effect of chitosan-g-poly(N-lactide) graft copolymer. Results and Discussion: The results revealed that chitosan-g-poly (N-lactide) graft copolymers had safety effect on the DNA, and binding with it. the human heat shock proteins gene, hsp-70, was used as a model of human genes to study the effect of chitosan-g-poly(N-lactide) graft copolymer, it shows a good binding ability the human gene, implies that it might be used in biomedical applications in the future. Conclusions: Grafting of L-lactide onto chitosn by ring opening polymerization was confirmed by FTIR. The repaired polymer has safety effects on human DNA and genes. The chitosan-g-poly (N-lactide) graft copolymer has shown high efficiency to electrostatic interaction with human DNA and gene, implying that it is suitable to be used as DNA and gene delivery.