This study is to explore the application of target temperature management and therapeutic hypothermia in the treatment of neuroprotection patients with severe traumatic brain injury and its effect on oxidative stress. From February 2019 to April 2021, 120 patients with severe traumatic brain injury cured were selected in our hospital. The patients were randomly divided into control and experimental groups. The control group accepted mild hypothermia therapy. The experimental group took targeted temperature management and mild hypothermia therapy. This study compared the prognosis, National Institute of Health Stroke Scale (NIHSS) score, oxidative stress level, brain function index and the incidence of complications in different groups. The prognosis of the experimental group was better (P < .05). After treatment, the NIHSS score lessened. The NIHSS score of the experimental group was lower at 3 and 6 weeks after treatment (P < .05). Following treatment, the level of superoxide dismutase-1 in the experimental group was higher and the level of malondialdehyde was lower (P < .05). After treatment, the brain function indexes of patients lessened. The experimental group's myelin basic protein, neuron specific enolase and glial fibrillary acidic protein indexes were lower (P < .05). The incidences of pendant pneumonia, atelectasis, venous thrombosis of extremities and ventricular arrhythmias in the experimental group were remarkably lower (P < .05). Targeted temperature management and mild hypothermia treatment can improve neurological function, maintain brain cell function, and reduce stress-reactions risk. The incidence of complications during hospitalization was reduced.Abbreviations: GCS = Glasgow Coma Scale, GFAP = glial fibrillary acidic protein, MBP = myelin basic protein, NSE = neuron specific enolase, NIHSS = National Institute of Health Stroke Scale, STBI = severe traumatic brain injury, TBI = traumatic brain injury, TTM = targeted temperature management.