We study the modifications of jets created in heavy-ion collisions at LHC energies. The inherent hierarchy of scales governing the jet evolution allows to distinguish a leading jet structure, which interacts coherently with the medium as a single color charge, from softer sub-structures that will be sensitive to effects of color decoherence. We argue how this separation comes about and show that this picture is consistent with experimental data on reconstructed jets at the LHC, providing a quantitative description simultaneously of the jet nuclear modification factor, the missing energy in di-jet events and the modification of the fragmentation functions. In particular, we demonstrate that effects due to color decoherence are manifest in the excess of soft particles measured in fragmentation functions in Pb-Pb compared to proton-proton collisions.