Calcium carbonate (CaCO3) is a crucial mineral with great scientific relevance in biomineralization and geoscience. However, excessive precipitation of CaCO3 is posing a threat to industrial production and the aquatic environment. The utilization of chemical inhibitors is typically considered an economical and successful route for addressing the scaling issues, while the underlying mechanism is still debated and needs to be further investigated. In this context, a deep understanding of the crystallization process of CaCO3 and how the inhibitors interact with CaCO3 nuclei and crystals are of great significance in evaluating the performance of scale inhibitors. In recent years, with the rapid development of computing facilities, computer simulations have provided an atomic‐level perspective on the kinetics and thermodynamics of possible association events in CaCO3 solutions as well as the predictions of nucleation pathway and growth mechanism of CaCO3 crystals as a complement to experiment. This review surveys several computational methods and their achievements in this field with a focus on analyzing the functional mechanisms of different types of inhibitors. A general discussion of the current challenges and future directions in applying atomistic simulations to the discovery, design, and development of more effective water‐scale inhibitors is also discussed.