2024
DOI: 10.1038/s41597-024-04159-2
|View full text |Cite
|
Sign up to set email alerts
|

MedSegBench: A comprehensive benchmark for medical image segmentation in diverse data modalities

Zeki Kuş,
Musa Aydin

Abstract: MedSegBench is a comprehensive benchmark designed to evaluate deep learning models for medical image segmentation across a wide range of modalities. It covers a wide range of modalities, including 35 datasets with over 60,000 images from ultrasound, MRI, and X-ray. The benchmark addresses challenges in medical imaging by providing standardized datasets with train/validation/test splits, considering variability in image quality and dataset imbalances. The benchmark supports binary and multi-class segmentation t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 63 publications
0
0
0
Order By: Relevance