After administration, drugs go through a complex, dynamic process of absorption, distribution, metabolism and excretion. The resulting time-dependent concentration, termed pharmacokinetics (PK), is critical to the pharmacological response from patients. An in vitro system that can test the dynamics of drug effects in a more systematic way would save time and costs in drug development. Integration of microfabrication and cell culture techniques has resulted in 'cells-on-a-chip' technology, which is showing promise for high-throughput drug screening in physiologically relevant manner. In this review, we summarize current research efforts which ultimately lead to in vitro systems for testing drug's effect in PK-based manner. In particular, we highlight the contribution of microscale systems towards this goal. We envision that the 'cells-on-a-chip' technology will serve as a valuable link between in vitro and in vivo studies, reducing the demand for animal studies, and making clinical trials more effective.