Future fire weather conditions under climate change were investigated based on the Fire Weather Index (FWI), Initial Spread Index (ISI) and threshold-specific indicators in Greece. The indices were calculated from climate datasets derived from high-resolution validated simulations of 5 km. The dynamical downscaled simulations with the WRF model were driven by EC-Earth output for historical (1980–2004) and future periods, under two Representative Concentration Pathways (RCPs), RCP4.5 and 8.5. The analysis showed that the FWI is expected to increase substantially, particularly in the southern parts with extreme values found above 100. In addition, the number of days with an FWI above the 90th percentile is projected to increase considerably (above 30 days), under both scenarios. Over the eastern and northern mainland, the increase is estimated with more than 70 days under RCP4.5, in the near future (2025–2049). Moreover, central and north-eastern parts of the country will be affected with 30 or more extreme consecutive days of prolonged fire weather, under RCP4.5, in the near future and under RCP8.5 in the far future (2075–2099). Finally, the expected rate of fire spread is more spatially extended all over the country and particularly from southern to northern parts compared to the historical state.