2022
DOI: 10.1093/genetics/iyac183
|View full text |Cite
|
Sign up to set email alerts
|

Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits

Abstract: Large-scale phenotype data are expected to increase the accuracy of genome-wide prediction and the power of genome-wide association analyses. However, genomic analyses of high-dimensional, highly correlated traits are challenging. We developed a method for implementing high-dimensional Bayesian multivariate regression to simultaneously analyze genetic variants underlying thousands of traits. As a demonstration, we implemented the BayesC prior in the R package MegaLMM. Applied to Genomic Prediction, MegaBayesC … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 41 publications
0
0
0
Order By: Relevance