A version of the iterated Bäcklund-Darboux transformation, where Darboux matrix takes a form of the transfer matrix function from the system theory, is constructed for the discrete canonical system and Non-Abelian Toda lattice. Results on the transformations of the Weyl functions, insertion of the eigenvalues, and construction of the bound states are obtained. A wide class of the explicit solutions is given. An application to the semi-infinite block Jacobi matrices is treated.