Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell-cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease.Keywords: fibrosis; collagen; fibroblast; aging; cytokines Interstitial lung disease is often associated with the development of chronic fibrosis. These diseases are characterized clinically by progressive dyspnea, cough, restrictive physiology, and impaired gas exchange. Humans manifest many types of fibrotic lung disease (1). Among the diffuse parenchymal lung disorders (DPLDs) are diseases of known cause (e.g., drug-related, environmental exposures, or those associated with collagen vascular disease), the idiopathic interstitial pneumonias (IIPs), the granulomatous DPLDs (e.g., sarcoidosis), and rare noncategorized diseases, such as lymphangioleiomyomatosis. Idiopathic pulmonary fibrosis (IPF) is the most common disease within the category of IIPs, and is histopathologically identified as usual interstitial pneumonia (UIP). Additional diseases within the IIP category include desquamative interstitial pneumonia, respiratory bronchiolitis interstitial lung disease, acute interstitial pneumonia, cryptogenic organizing pneumonia, lymphocytic interstitial pneumonia, and nonspecific interstitial pneumonia (NSIP). IPF carries a poor prognosis, with a mean survival time of less than 5 years after diagnosis (2-5). Biopsies from a single patient can show heterogenous patterns consistent with both UIP and NSIP (4, 6, 7), suggesting that NSIP shares common pathogenic mechanisms with UIP.Diagnoses of patients with IPF who do not exhibit classic high-resolution computed tomography scan changes are confirmed by histopathologic evaluations of surgical lung biopsies, which demonstrate the pattern of UIP. Hallmark features of UIP include epithelial cell hyperplasia, basement membrane denudation, alveolar consolidation, and fibroblastic foci in a pa...