ABSTRAK
ABSTRACT
One of the problems in the speaker identification system is a feature that generated less resistant to noise. In the noisy environment, the speaker identification system performance can drop significantly. It is caused by environmental differences when training and testing. One feature extraction method used to identify the speaker and sensitive to noise is Mel frequency cepstral coefficient (MFCC). In a clean environment, the performance generated by MFCC method is very high, but dropped dramatically when in the noisy environment. In this study, we propose to modify the MFCC method using endpoint detection residues. Results of endpoint detection algorithm is speech and nonspeech (residue). Nonspeech or residues are usually not used in the next process. At the noisy signal, the residue of endpoint detection algorithm is filled by the noise itself so that it can be used as information noise. The residue is extracted to get the magnitude of the noisy signal. Magnitude of the noisy signal is used to remove noise on the main signal or speech.The experiments using five types of noise with seven levels of SNR. The type of noise that used is f16, hfchannel, pink, volvo, and white. While the level of SNR that used is clean, 25, 20, 15,10,5, and