Melatonin, synthesized in and released from the pineal gland, has been demonstrated by multiple in vivo and in vitro studies to have an oncostatic role in hormone-dependent tumors. Furthermore, several clinical trials point to melatonin as a promising adjuvant molecule to be considered for cancer treatment. In the past few years, evidence of a broader spectrum of action of melatonin as an antitumor agent has arisen; thus, melatonin appears to also have therapeutic effects in several types of hormone-independent cancer, including ovarian, leukemic, pancreatic, gastric and non-small cell lung carcinoma. In the present study, the latest findings regarding melatonin molecular actions when concomitantly administered with either radiotherapy or chemotherapy in cancer were reviewed, with a particular focus on hormone-dependent breast cancer. Finally, the present study discusses which direction should be followed in the next years to definitely clarify whether or not melatonin administration could protect against non-desirable effects (such as altered gene expression and post-translational protein modifications) caused by chemotherapy or radiotherapy treatments. As treatments move towards personalized medicine, comparative gene expression profiling with and without melatonin may be a powerful tool to better understand the antitumor effects of melatonin, the pineal gland hormone.