Horticultural crops play a vital role in global food production, nutrition, and the economy. Horticultural crops are highly vulnerable to abiotic stresses. These abiotic stresses hinder plant growth and development by affecting seed germination, impairing photosynthetic activity, and damaging root development, thus leading to a decrease in fruit yield, quality, and productivity. Scientists have conducted extensive research to investigate the mechanisms of resilience and the ability to cope with environmental stresses. In contrast, the use of phytohormones to alleviate the detrimental impacts of abiotic stresses on horticulture plants has been generally recognized as an effective method. Among phytohormones, melatonin (MT) is a novel plant hormone that regulates various plants’ physiological functions such as seedling development, root system architecture, photosynthetic efficiency, balanced redox homeostasis, secondary metabolites production, accumulation of mineral nutrient uptake, and activated antioxidant defense system. Importantly, MT application significantly restricted heavy metals (HMs) uptake and increased mineral nutrient accumulation by modifying the root architecture system. In addition, MT is a naturally occurring, multifunctional, nontoxic biomolecule having antioxidant properties. Furthermore, this review described the hormonal interaction between MT and other signaling molecules in order to enhance abiotic stress tolerance in horticulture crops. This review focuses on current research advancements and prospective approaches for enhancing crop tolerance to abiotic stress.