Melatonin, a neurohormone secreted by the pineal gland, has a variety of biological functions, such as circadian rhythms regulation, anti-oxidative activity, immunomodulatory effects, and anittumor, etc. At present, its antitumor effect has attracted people's attention due to its extensive tissue distribution, good tissue compatibility, and low toxic and side effects. In the gastrointestinal tract, there is high level of melatonin and many studies showed melatonin has effects of anti-gastric cancer. In this experiment, human gastric cancer cell lines AGS and MGC803 were used to investigate the intracellular molecular mechanism of melatonin against gastric cancer. After AGS and MGC803 have been treated with melatonin, the changes of cell morphology and cellular structure were observed under electron microscope. Flow cytometer and apoptosis detection kits were used to analyze the effect of apoptosis on AGS and MGC803. The alterations of apoptosis-related proteins Caspase 9, Caspase 3, and upstream regulators AKT, MDM2 including expression, phosphorylation, and activation were detected to analyze the intracellular molecular mechanism of melatonin inhibiting gastric cancer. In AGS and MGC803 cells with melatonin exposure, cleaved Caspase 9 was upregulated and Caspase 3 was activated; moreover, MDM2 and AKT expression and phosphorylation were downregulated. Melatonin promoted apoptosis of AGS and MGC803 cells by the downregulation of AKT and MDM2. Anat Rec, 302:1544-