Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Pesticides like atrazine which are frequently present in everyday surroundings, have adverse impacts on human health and may contribute to male infertility. The work aimed to analyze the histological and biochemical effects of atrazine on the testis in adult albino rats and whether co-administration with resveratrol could reverse the effect of atrazine. Forty adult male albino rats in good health participated in this study. They were categorized at random into four groups: the Group Ӏ received water through a gastric tube for two months every day, the Group ӀӀ received resveratrol (20 mg/kg body weight (b.w.)) through a gastric tube for two months every day, the Group ӀӀӀ received atrazine (50 mg/kg bw) through a gastric tube for two months every day, the Group ӀV received concomitant doses of atrazine and resveratrol for two months every day. The testes of the animals were then carefully removed and prepared for biochemical, immunohistochemical, light, and electron microscopic studies. Atrazine exposure led to a significant decrease in serum testosterone hormone level, upregulation of caspase 3 and iNOS mRNA levels, destructed seminiferous tubules with few sperms in their lumens, many collagen fibres accumulation in the tunica albuginea and the interstitium, abnormal morphology of some sperms as well as many vacuolations, and damaged mitochondria in the cytoplasm of many germ cells. Concomitant administration of resveratrol can improve these adverse effects. It was concluded that atrazine exposure is toxic to the testis and impairs male fertility in adult rat and coadministration of resveratrol guards against this toxicity.
Pesticides like atrazine which are frequently present in everyday surroundings, have adverse impacts on human health and may contribute to male infertility. The work aimed to analyze the histological and biochemical effects of atrazine on the testis in adult albino rats and whether co-administration with resveratrol could reverse the effect of atrazine. Forty adult male albino rats in good health participated in this study. They were categorized at random into four groups: the Group Ӏ received water through a gastric tube for two months every day, the Group ӀӀ received resveratrol (20 mg/kg body weight (b.w.)) through a gastric tube for two months every day, the Group ӀӀӀ received atrazine (50 mg/kg bw) through a gastric tube for two months every day, the Group ӀV received concomitant doses of atrazine and resveratrol for two months every day. The testes of the animals were then carefully removed and prepared for biochemical, immunohistochemical, light, and electron microscopic studies. Atrazine exposure led to a significant decrease in serum testosterone hormone level, upregulation of caspase 3 and iNOS mRNA levels, destructed seminiferous tubules with few sperms in their lumens, many collagen fibres accumulation in the tunica albuginea and the interstitium, abnormal morphology of some sperms as well as many vacuolations, and damaged mitochondria in the cytoplasm of many germ cells. Concomitant administration of resveratrol can improve these adverse effects. It was concluded that atrazine exposure is toxic to the testis and impairs male fertility in adult rat and coadministration of resveratrol guards against this toxicity.
Abamectin is one of the most widely used pesticides due to its strong insecticidal and anthelmintic activities. Melatonin is a neurohormone with potent antioxidant, anti-apoptotic, and anti-inflammatory effects. This study aimed to investigate the potential ameliorative effects of melatonin against abamectin-induced testicular toxicity in rats. Twenty-four rats were divided into four groups: control group (1 mL/kg/day corn oil), melatonin-treated group (10 mg/kg/day), abamectin-treated group (0.5 mg/kg/day), and melatonin plus abamectin-treated group. Test substances were administered via oral gavage once daily for 28 days. While MDA and 8-OHdG levels increased in the testicular tissue of rats treated with abamectin, SOD, CAT, GPx, and GST enzyme activities decreased significantly. While interleukin-17 levels, TNF-α, and caspase3 expression increased in the testicular tissue, acetylcholinesterase activity decreased. At the same time, serum gonadotropins (luteinizing and follicle-stimulating hormones) and testosterone levels decreased. Light microscope examinations of testicular tissues revealed severe histopathological changes, such as atrophic hyalinized seminiferous tubules, basement membrane irregularity, degeneration, spermatogenic cell loss, and necrosis. Electron microscopy examinations revealed large vacuoles in Sertoli and spermatogenic cells, swelling and vacuolization in mitochondria, lysosomal structures, and increased pyknotic nuclei. In contrast, melatonin supplementation significantly ameliorated abamectin-induced testicular toxicity in rats through antioxidant, antiapoptotic, and anti-inflammatory mechanisms.
BackgroundSilver nanoparticles (Ag/Ag₂O NPs) have garnered attention for their potent antioxidant, antimicrobial, and anti-inflammatory properties, showing promise for therapeutic applications, particularly in mitigating chemical-induced toxicity.ObjectiveThis study aimed to synthesize Ag/Ag₂O NPs using Olea europaea (olive) leaf extract as a green, eco-friendly reducing agent and evaluate their protective effects against metribuzin-induced toxicity in Wistar rats, focusing on oxidative stress, hematological parameters, and lipid profiles, with specific dose optimization.MethodologyAg/Ag₂O NPs were synthesized using Olea europaea leaf extract, and their properties were confirmed via XRD, FTIR, SEM, EDS, and UV-visible spectroscopy. Wistar rats exposed to metribuzin (110 mg/kg/day) were treated with two doses of Ag/Ag₂O NPs (0.062 mg/kg and 0.125 mg/kg). Hematological and biochemical markers were assessed to evaluate the NPs’ protective effects.ResultsPhysicochemical characterization confirmed the successful formation of Ag/Ag₂O NPs loaded with phytochemicals, exhibiting crystallite sizes of 23 nm and 19 nm, a particle size of 25 nm, and significant peaks in XRD, FTIR, and UV-Vis spectra indicating the formation of Ag/Ag₂O. Metribuzin exposure led to significant hematological disruptions (elevated WBC, reduced RBC and hemoglobin) and worsened lipid profiles (increased cholesterol, LDL, and triglycerides). The lower NP dose (0.062 mg/kg) improved WBC, RBC, hemoglobin, and platelet counts, normalized lipid levels, and positively influenced biochemical markers such as serum creatinine and uric acid. In contrast, the higher NP dose (0.125 mg/kg) showed mixed results, with some improvements but an increase in triglycerides and continued elevation of ASAT and ALAT enzyme levels.ConclusionAg/Ag₂O NPs synthesized via green methods using olive leaf extract effectively mitigated metribuzin-induced toxicity, especially at lower doses, by improving oxidative stress markers and hematological and biochemical profiles. Dose optimization is crucial to maximize therapeutic benefits and minimize adverse effects, underscoring their potential in treating chemical-induced toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.