Embryo development block seriously limits the success of in vitro embryo production and assisted reproductive technology. Although numerous researchers have explored this problem, it remains to be solved. In this study, we found that melatonin supplementation at 10 and 10 M in M16 significantly reduced two-cell block of mouse embryos. When those melatonin-treated four-cell embryos were transplanted into the oviducts of female recipient mice, the litter sizes were significantly increased compared with those of the controls. Mechanism study discovered that melatonin treatment markedly reduced reactive oxygen species and mitochondrial superoxide. Quantitative polymerase chain reaction revealed that melatonin significantly upregulated the transcription of catalase, superoxide dismutase 2, glutathione peroxidase, and the antiapoptotic factors Bcl-2 and Bcl-x while downregulated the transcription of pro-apoptotic genes p53 and Bax. In addition, we found Dux, an important gene which promotes zygotic genome activation, and zygotic genes (zinc finger and SCAN4B and eukaryotic translation initiation factor 1A) were all increased after melatonin treatment. Melatonin membrane receptors have two isoforms, melatonin receptor 1 and 2 (MT1, MT2). Further studies with luzindole (a nonselective MT1 and MT2 antagonist) demonstrated that the beneficial effects of melatonin on reducing two-cell block were not mediated by the melatonin membrane receptors. This study shows that melatonin can be used for improving the embryo quality and production efficiency cultured in vitro and also identifies the underlying mechanism by which melatonin decreases two-cell block.