Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction: According to current knowledge, at birth, the pineal gland and melatonin receptors are already present and the suprachiasmatic nucleus is largely functional, and noradrenaline, the key pineal transmitter, can be detected in the early foetal period. It is still unclear why the pineal gland is not able to start its own pulsatile synthesis and secretion of melatonin in the first months of life, and as a result, infants during this time are dependent on an external supply of melatonin. Method: The causes and consequences of this physiological melatonin deficiency in human infancy are examined in a systematic review of the literature, in which 40 of 115 initially selected publications were evaluated in detail. The references of these studies were checked for relevant studies on this topic. References from previous reviews by the author were taken into account. Results: The development and differentiation of the pineal gland, the pinealocytes, as the site of melatonin synthesis, and the development and synaptic coupling of the associated predominantly noradrenergic neural pathways and vessels and the associated Lhx4 homebox only occurs during the first year of life. Discussion: The resulting physiological melatonin deficiency is associated with sleep disorders, infant colic, and increased crying in babies. Intervention studies indicate that this deficiency should be compensated for through breastfeeding, the administration of nonpooled donor milk, or through industrially produced chrononutrition made from nonpooled cow’s milk with melatonin-poor day milk and melatonin-rich night milk.
Introduction: According to current knowledge, at birth, the pineal gland and melatonin receptors are already present and the suprachiasmatic nucleus is largely functional, and noradrenaline, the key pineal transmitter, can be detected in the early foetal period. It is still unclear why the pineal gland is not able to start its own pulsatile synthesis and secretion of melatonin in the first months of life, and as a result, infants during this time are dependent on an external supply of melatonin. Method: The causes and consequences of this physiological melatonin deficiency in human infancy are examined in a systematic review of the literature, in which 40 of 115 initially selected publications were evaluated in detail. The references of these studies were checked for relevant studies on this topic. References from previous reviews by the author were taken into account. Results: The development and differentiation of the pineal gland, the pinealocytes, as the site of melatonin synthesis, and the development and synaptic coupling of the associated predominantly noradrenergic neural pathways and vessels and the associated Lhx4 homebox only occurs during the first year of life. Discussion: The resulting physiological melatonin deficiency is associated with sleep disorders, infant colic, and increased crying in babies. Intervention studies indicate that this deficiency should be compensated for through breastfeeding, the administration of nonpooled donor milk, or through industrially produced chrononutrition made from nonpooled cow’s milk with melatonin-poor day milk and melatonin-rich night milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.