MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment program, MELCOR has been used to model the MP-1 and MP-2 experiments, which provided data for late-phase melt progression in PWR geometries. Core temperatures predicted by MELCOR were within 250-500K of measured data in both MP-1 and MP-2. Relocation in the debris bed and metallic crust regions of MP-2 was predicted accurately compared to PIE data. Temperature gradients in lower portions of the test bundle were not predicted well in both MP-1 and MP-2, due to the lack of modeling of the heat transfer path to the cooling jacket in those portions of the test bundles. Fifteen sensitivity studies were run on various core (COR), control volume hydrodynamics (CVH) and heat structures (HS) package parameters. No unexpected sensitivities were found, and in particular there were no sensitivities to reduced time step, finer nodalization or to computer platform. Calculations performed by the DEBRIS and TAC2D codes for MP-1 and MP-2 showed better agreement with measured data than those performed by MELCOR. This was expected, though, due to the fully 2-dimensional modeling used in the other codes.