The effect of the addition of clay as a third component in polymer modified asphalts has been investigated. After a preliminary investigation on the binary asphalt/clay and polymer/clay blends, the tertiary blends were prepared by adding the clay and polymer to the asphalt, either separately or in the form of a premixed master batch. Intercalated nanocomposites with comparable interlayer distances and glass transition temperatures were obtained in both cases. However, the results show that the mixing procedure significantly affected the final rheological properties. The master curves built in the linear viscoelastic range and represented in both the frequency and the temperature domains help to visualize and evaluate such differences.
Suggested Reviewers:Dear Professor Vancso, I'm submitting the new version, revised according to referees' suggestions. I would like to thank you and the referees for helping us in improving the quality of the paper.
AbstractThe effect of the addition of clay as a third component in polymer modified asphalts has been investigated. After a preliminary investigation on the binary asphalt/clay and polymer/clay blends, the tertiary blends were prepared by adding the clay and polymer to the asphalt, either separately or in the form of a premixed master batch. Intercalated nanocomposites with comparable interlayer distances and glass transition temperatures were obtained in both cases. However, the results show that the mixing procedure significantly affected the final rheological properties. The master curves built in the linear viscoelastic range and represented in both the frequency and the temperature domains help to visualize and evaluate such differences.