Using non-equilibrium computer simulations, it is shown that various phenomenological criteria for melting and freezing hold not only in equilibrium but in steady-state non-equilibrium as well. In particular, we study the steady state of charge-polydisperse Brownian particles shaken by a time-dependent oscillatory electric field. Among these criteria are the Lindemann melting rule, the Hansen-Verlet freezing rule and the dynamical freezing criterion proposed for colloidal fluids by Löwen, Palberg and Simon.