The synthesis of a new conjugated oligoelectrolyte (COE), namely DSAzB, is described, which contains a conjugated core bearing a diazene moiety in the center of its electronically delocalized structure. Similar to structurally related phenylenevinylene-based COEs, DSAzB readily intercalates into model and natural lipid bilayer membranes. Photoinduced isomerization transforms the linear trans COE into a bent or C-shape form. It is thereby possible to introduce DSAzB into the bilayer of a cell and disrupt its integrity by irradiation with light. This leads to controlled permeabilization of membranes, as demonstrated by the release of calcein from DMPG/DMPC vesicles and by propidium iodide influx experiments on S. epidermidis. Both experiments support that the permeabilization is selective for the light stimulus, highly efficient, and repeatable. Target-selective and photoinduced actions demonstrated by DSAzB may have broad applications in biocatalysis and related biotechnologies.