Electromicrobial production (EMP) processes represent an attractive strategy for the capture and conversion of CO2 into carbon-based products. We describe the development and application of comprehensive reactor, process, and life cycle impact models to analyze three major EMP systems relying on formate, H2, and acetate as intermediate molecules. Our results demonstrate that EMP systems can achieve a smaller carbon footprint than traditional bioprocessing strategies provided the electric grid is composed of >~90% renewable energy sources. For each of the three products we consider (biomass, enzymes, and lactic acid), the H2-mediated Knallgas bacteria system achieves the lowest overall global warming potential, indicating that this EMP strategy may be best-suited for industrial efforts based on current technology. We also identify environmental hotspots and process limitations that are key sites for future engineering and research efforts for each EMP system. Our analysis demonstrates the utility of an integrated bioelectrochemical model/life cycle assessment framework in both analyzing and aiding the ecodesign of electromicrobial processes and should help guide the design of working, scalable, and sustainable systems.