Acetic acid bacteria, especially Gluconobacter species, have been known to catalyze the extensive oxidation of sugar alcohols (polyols) such as D-mannitol, glycerol, D-sorbitol, and so on. Gluconobacter species also oxidize sugars and sugar acids and uniquely accumulate two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, in the culture medium by the oxidation of D-gluconate. However, there are still many controversies regarding their enzyme systems, especially on D-sorbitol and also D-gluconate oxidations. Recently, pyrroloquinoline quinone-dependent quinoprotein D-arabitol dehydrogenase and D-sorbitol dehydrogenase have been purified from G. suboxydans, both of which have similar and broad substrate specificity towards several different polyols. In this study, both quinoproteins were shown to be identical based on their immunocross-reactivity and also on gene disruption and were suggested to be the same as the previously isolated glycerol dehydrogenase (EC 1.1.99.22). Thus, glycerol dehydrogenase is the major polyol dehydrogenase involved in the oxidation of almost all sugar alcohols in Gluconobacter sp. In addition, the so-called quinoprotein glycerol dehydrogenase was also uniquely shown to oxidize D-gluconate, which was completely different from flavoprotein D-gluconate dehydrogenase (EC 1.1.99.3), which is involved in the production of 2-keto-Dgluconate. The gene disruption experiment and the reconstitution system of the purified enzyme in this study clearly showed that the production of 5-keto-D-gluconate in G. suboxydans is solely dependent on the quinoprotein glycerol dehydrogenase.Acetic acid bacteria are obligate aerobes well known as vinegar producers and also known to be able to oxidize various sugars and sugar alcohols such as D-glucose, glycerol, D-sorbitol, and so on, in addition to ethanol. Such oxidation reactions are called oxidative fermentation, since they involve incomplete oxidations of such alcohols or sugars accompanied by an accumulation of the corresponding oxidation products in large amounts in the culture medium. Of the two genera of acetic acid bacteria, Gluconobacter species extensively catalyze the oxidation of sugars and sugar alcohols except for ethanol, while Acetobacter species have a high ability to oxidize ethanol to acetic acid. These oxidation reactions of sugars or sugar alcohols seem to be carried out by membrane-bound dehydrogenases linked to the respiratory chain located in the cytoplasmic membrane of the organism (14). Of these oxidative fermentations of acetic acid bacteria, vinegar production from ethanol and 2-keto-D-gluconate (2KGA) production from glucose have each been shown to be carried out by sequential membranebound alcohol and aldehyde dehydrogenases and by glucose and gluconate dehydrogenases, respectively (14).There is still controversy about the mechanism of L-sorbose and 5-keto-D-gluconate (5KGA) production in Gluconobacter species. Three different membrane-bound enzymes have been proposed to be involved in L-sorbose production fr...