In a recent study, spectroscopic observations of modified cholesterol in both lipid-coated nanoparticles and liposomes provided evidence for a disorder-to-order orientational transition with increasing temperature. Below a critical temperature, in a membrane composed of modified cholesterol, saturated (DPPC) lipid, and anionic (DOPS) lipid, a roughly equal population of head-out and head-in conformations was observed. Surprisingly, as temperature was increased the modified cholesterol presented an abrupt transition to a population of all head-in orientations. Additionally, when saturated DPPC lipids were replaced by unsaturated DOPC the disorder-to-order transition was eliminated. To gain insight into this curious transition, we use all-atom molecular dynamics simulations to characterize the structure and fluctuations of lipid bilayers composed of saturated and unsaturated lipids, in the presence of normal and modified cholesterol. Free energy differences between head-out and head-in conformations are computed as a function of varying lipid membrane composition for normal and modified cholesterol. In bilayers primarily composed of DPPC, the orientation of modified cholesterol is observed to depend sensitively on the orientation of the surrounding normal or modified cholesterol molecules, suggesting cooperative Ising-like interactions favoring an ordered state. In bilayers primarily composed of DOPC, spontaneous flip-flop of modified cholesterol is observed, consistent with the measured small free energy barrier separating the head-in and head-out orientations. This combined experimental and computational study effectively characterizes the orientational dimorphism and provides novel insight into the fundamental nature of cholesterol interactions in membrane.