Catalogação-na-publicaçãoRodrigues, Raphael Synthesis and characterization of polysulfone/nanoclay/polyethylene oxide composite ultrafiltration membranes / R. Rodrigues --versão corr. --São Paulo, 2016. 165 p. Palavras-chave: membranas de polisulfona, modificação de estrutura, nano-argila,
PEO
ABSTRACTMembrane structure modification is a common approach to enhance membrane properties and performance. For example, the addition of dopants to the membrane casting solution has been observed to increase hydrophilicity, alter surface and internal pore structure, increase thermal and mechanical resistance, and impart anti-fouling properties. In this study, it was evaluated how the addition of individual and simultaneous nanoclay and polyethylene oxide (PEO) dopants affected the structure and performance of polysulfone (PSU) ultrafiltration membranes. Membrane performance was evaluated in the cross-flow configuration. The pure water permeability of the neat PSU membrane was 15 L/m².h.bar and at the optimal dosage of the individually doped membranes was 1.5% weight nanoclay to PSU and 5% weight PEO to PSU resulting in permeability of 56 and 237 L/m².h.bar, respectively.Simultaneous doping using the optimal individual weight percentages had a lower effect resulting in a permeability of 192 L/m².h.bar, in contrast the simultaneous addition of 4.5% nanoclay and 5% PEO had a higher effect resulting in a permeability of 319 L/m².h.bar. The control membrane was compared to the referred membranes and with the 4.5% nanoclay membrane (best permeability only when combined with PEO). These membranes were further examined to determine dopant effects on pore microstructure, superficial charge, separation performance, and fouling susceptibility.In general, doping with nanoclay improved membrane thermal/mechanical resistance and permeability with minimal loss in rejection. Doping with PEO resulted in a greater permeability as compared to nanoclay; however, PEO doping decreased rejection, mechanical resistance, and increased irreversible fouling. Thus, both advantageous and disadvantageous effects should be considered when selecting a dopant to optimize membrane performance.