Summary
Bacteriophages encode an arsenal of proteins to lyse bacteria by breaking their surface structures, constituting a promising alternative to antibiotics. However, the selection and bioengineering of endolysins and other phage lytic proteins need to be assisted by a previous knowledge of their molecular characteristics. In this study, all putative lytic proteins encoded in Pseudomonas phages were in silico examined to describe their diversity, host association and molecular evolution. A total of 491 proteins were identified among 223 phages, including endolysins, holins, pinholins, spanins, lipases and peptidases. Protein families and combination of functional domains were characteristic of phages belonging to the same genus, and these tended to infect a single host species. Clustering and phylogenetic analysis showed a protein grouping associated with bacterial host, and some functional domains being specific. Interestingly, most putative lytic proteins from phages infecting P. fluorescens and P. putida had negative net charges, opposed to most endolysins. Phage lifestyle also had an impact on protein variability, with transglycosylases, glucosaminidases, holins and spanins from lysogenic phages clustering into monophyletic nodes, suggesting the effect of a different selection pressure as a result of the co‐option of a new function in the lysogenized bacteria.