Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
During human immunodeficiency virus (HIV-1) entry into host cells, binding to the receptors, CD4 and CCR5/CXCR4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer ((gp120-gp41)3). CD4 binding induces Env to make transitions from its pretriggered conformation (PTC) to more "open" conformations that are sensitive to inhibition by antibodies, CD4-mimetic compounds (CD4mcs) and exposure to cold. Changes in functional membrane Envs have been identified that either stabilize or destabilize the PTC. Here, we investigate the stoichiometric requirements for the PTC-stabilizing and -destabilizing changes in the Env protomers. To this end, we generated viruses bearing Envs with mixed protomers exhibiting different degrees of PTC stability and determined the sensitivity of the viruses to cold (0°C) and, in some cases, to a CD4mc. The number of stabilized Env protomers required to achieve stabilization of the PTC was inversely related to the degree of PTC stabilization that resulted from the introduced Env change. For strongly stabilizing Env changes, modification of a single protomer was sufficient to achieve PTC stabilization; given adequate stability, the modified protomer can apparently constrain the conformation of the other two protomers to maintain the PTC. Weakly stabilizing Env changes needed to be present in all three protomers to achieve efficient stabilization of the PTC. In many cases, the PTC was disrupted when destabilizing changes were present in only a single protomer. These complementary results suggest that conformational symmetry among the protomers of the functional Env trimer is conducive to the integrity of the PTC.
During human immunodeficiency virus (HIV-1) entry into host cells, binding to the receptors, CD4 and CCR5/CXCR4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer ((gp120-gp41)3). CD4 binding induces Env to make transitions from its pretriggered conformation (PTC) to more "open" conformations that are sensitive to inhibition by antibodies, CD4-mimetic compounds (CD4mcs) and exposure to cold. Changes in functional membrane Envs have been identified that either stabilize or destabilize the PTC. Here, we investigate the stoichiometric requirements for the PTC-stabilizing and -destabilizing changes in the Env protomers. To this end, we generated viruses bearing Envs with mixed protomers exhibiting different degrees of PTC stability and determined the sensitivity of the viruses to cold (0°C) and, in some cases, to a CD4mc. The number of stabilized Env protomers required to achieve stabilization of the PTC was inversely related to the degree of PTC stabilization that resulted from the introduced Env change. For strongly stabilizing Env changes, modification of a single protomer was sufficient to achieve PTC stabilization; given adequate stability, the modified protomer can apparently constrain the conformation of the other two protomers to maintain the PTC. Weakly stabilizing Env changes needed to be present in all three protomers to achieve efficient stabilization of the PTC. In many cases, the PTC was disrupted when destabilizing changes were present in only a single protomer. These complementary results suggest that conformational symmetry among the protomers of the functional Env trimer is conducive to the integrity of the PTC.
Upon binding to the host cell receptor, CD4, the pretriggered (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer undergoes transitions to downstream conformations important for virus entry. State 1 is targeted by most broadly neutralizing antibodies (bNAbs), whereas downstream conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. Extraction of Env from the membranes of viruses or Env-expressing cells disrupts the metastable State-1 Env conformation, even when detergent-free approaches like styrene-maleic acid lipid nanoparticles (SMALPs) are used. Here, we combine three strategies to solubilize and purify mature membrane Envs that are antigenically native (i.e., recognized by bNAbs and not pNAbs): (1) solubilization of Env with a novel amphipathic copolymer, Amphipol A18; (2) use of stabilized pretriggered Env mutants; and (3) addition of the State-1-stabilizing entry inhibitor, BMS-806. Amphipol A18 was superior to the other amphipathic copolymers tested (SMA and AASTY 11–50) for preserving a native Env conformation. A native antigenic profile of A18 Env-lipid-nanodiscs was maintained for at least 7 days at 4°C and 2 days at 37°C in the presence of BMS-806 and was also maintained for at least 1 h at 37°C in a variety of adjuvants. The damaging effects of a single cycle of freeze-thawing on the antigenic profile of the A18 Env-lipid-nanodiscs could be prevented by the addition of 10% sucrose or 10% glycerol. These results underscore the importance of the membrane environment to the maintenance of a pretriggered (State-1) Env conformation and provide strategies for the preparation of lipid-nanodiscs containing native membrane Envs. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins like Env rely on purification procedures that maintain their natural conformation. In this study, we show that an amphipathic copolymer A18 can directly extract HIV-1 Env from a membrane without the use of detergents. A18 promotes the formation of nanodiscs that contain Env and membrane lipids. Env in A18-lipid nanodiscs largely preserves features recognized by broadly neutralizing antibodies (bNAbs) and conceals features potentially recognized by poorly neutralizing antibodies (pNAbs). Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful for future studies of HIV-1 Env structure, interaction with receptors and antibodies, and immunogenicity.
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, “closed” (State-1) conformation to more “open” (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41) 3 ] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25–50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system. IMPORTANCE A major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.