Two linear phosphazene polymers were synthesized with differing amounts of hydrophilic 2-(2-methoxyethoxy)ethanol (MEE) and hydrophobic 4-methoxyphenol (MEOP) substituted on the backbone. These high polymers were cast into membranes and their permeability to water, methanol, ethanol, and 2-propanol was evaluated as a function of temperature. An additional polymer with a low content of MEE was studied for water permeation and was characterized by trace flux. At higher levels of MEE on the backbone, fluxes of all solvents increased. Solubility also was found to increase with increasing MEE content for all solvents except water. Unexpectedly, water was found to be less soluble in the higher MEE polymer, although higher membrane fluxes were observed. Diffusion coefficients showed the following trend: methanol Ͼ Ͼ 2-propanol Ͼ ethanol Ͼ Ͼ water. Finally, the affinity of solvents and polymers was discussed in terms of Hansen solubility parameters.