Pallone, Thomas L., Zhong Zhang, and Kristie Rhinehart. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 284: F253-F266, 2003; 10.1152/ajprenal.00304.2002.-Perfusion of the renal medulla plays an important role in salt and water balance. Pericytes are smooth muscle-like cells that impart contractile function to descending vasa recta (DVR), the arteriolar segments that supply the medulla with blood flow. DVR contraction by ANG II is mediated by depolarization resulting from an increase in plasma membrane Cl Ϫ conductance that secondarily gates voltage-activated Ca 2ϩ entry. In this respect, DVR may differ from other parts of the efferent microcirculation of the kidney. Elevation of extracellular K ϩ constricts DVR to a lesser degree than ANG II or endothelin-1, implying that other events, in addition to membrane depolarization, are needed to maximize vasoconstriction. DVR endothelial cytoplasmic Ca 2ϩ is increased by bradykinin, a response that is inhibited by ANG II. ANG II inhibition of endothelial Ca 2ϩ signaling might serve to regulate the site of origin of vasodilatory paracrine agents generated in the vicinity of outer medullary vascular bundles. In the hydropenic kidney, DVR plasma equilibrates with the interstitium both by diffusion and through water efflux across aquaporin-1. That process is predicted to optimize urinary concentration by lowering blood flow to the inner medulla. To optimize urea trapping, DVR endothelia express the UT-B facilitated urea transporter. These and other features show that vasa recta have physiological mechanisms specific to their role in the renal medulla. vasa recta; perfusion; hypertension; oxygenation; urinary concentration; patch clamp; calcium; fura 2 THE MICROCIRCULATION OF THE kidney is regionally specialized. In the cortex, afferent and efferent arterioles govern the driving forces that promote glomerular filtration. A dense peritubular capillary plexus arising from efferent arterioles surrounds the proximal and distal convoluted tubules to accommodate enormous reabsorption of glomerular filtrate. In contrast, vasa recta serve needs specific to the medulla. Through the counterflow arrangement of descending (DVR) and ascending vasa recta (AVR), countercurrent exchange traps NaCl and urea deposited to the interstitium by collecting ducts and the loops of Henle. This is vital to maintain corticomedullary osmotic gradients but conflicts with the need to supply nutrient blood flow to medullary tissue. Metabolic substrates that enter the medulla in DVR blood diffuse to the AVR to be shunted back to the cortex. To deal with the threat of medullary hypoxia resulting from this process, the kidney has evolved a capacity to exert subtle control over regional perfusion of the outer and inner medulla. The details are far from clear, but much experimental evidence points to the complex interactions of many autocoids and paracrine agents to modulate vasomotor tone at various sites along the microvascular circuit. The goal of this review is to summarize ...