Hybrid
vesicles (HVs) that consist of mixtures of block copolymers
and lipids are robust biomimetics of liposomes, providing a valuable
building block in bionanotechnology, catalysis, and synthetic biology.
However, functionalization of HVs with membrane proteins remains laborious
and expensive, creating a significant current challenge in the field.
Here, using a new approach of extraction with styrene-maleic acid
(SMA), we show that a membrane protein (cytochrome
bo
3
) directly transfers into HVs with an efficiency of 73.9
± 13.5% without the requirement of detergent, long incubation
times, or mechanical disruption. Direct transfer of membrane proteins
using this approach was not possible into liposomes, suggesting that
HVs are more amenable than liposomes to membrane protein incorporation
from a SMA lipid particle system. Finally, we show that this transfer
method is not limited to cytochrome
bo
3
and can also be performed with complex membrane protein mixtures.