Abstract:Spiking neural networks (SNNs) are potential competitors to artificial neural networks (ANNs) due to their high energy-efficiency on neuromorphic hardware. However, SNNs are unfolded over simulation time steps during the training process. Thus, SNNs require much more memory than ANNs, which impedes the training of deeper SNN models. In this paper, we propose the reversible spiking neural network to reduce the memory cost of intermediate activations and membrane potentials during training. Firstly, we extend th… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.