Miniaturized vectorial beam steering mirrors are required in numerous applications like (i) LIDAR, (ii) diagnostic imaging or (iii) miniaturized therapeutic laser systems. To increase simultaneously static tilt angle (≥ ±5°) and mirror aperture (≥ 3mm) electro-dynamic driven MEMS vector scanners, actuated by moving magnet drives, were developed. Here, Fraunhofer IPMS uses a hybrid MEMS concept combining its experience in the fabrication of monolithic silicon 2D MEMS scanning mirrors with existing know-how in MEMS micro-assembly technologies. Two designs of electro-magnetic driven vectorial 2D MEMS scanners are presented, (i) a non-gimbaled 2D vector scanner with 8 mm mirror aperture and ≥ ±2° quasi-static tilt angle and (ii) a 2D vector scanner with gimble suspended moving magnet drive. The gimbaled electro-magnetic MEMS scanner has a 5 mm large aperture and enables large quasi-static tilt angles of ±13° on both scan axis. Eigenfrequencies are 142 Hz (X) and 124 Hz (Y) allowing non-resonant vectorial scanning with speeds up to 100…400°/s. A step response time < 10 ms is achieved in closed loop control for both axes. This hybrid electro-magnetic MEMS approach significantly expands the parameter space of the previous monolithic electro-static scanners.