Introduced plants may out-compete natives by belowground allelopathic effects on soil communities including the symbionts of native plants. We tested for an allelopathic effect of an introduced crucifer, Raphanus sativus, on a common neighboring legume, Lupinus nanus, on the legume's rhizobium affiliates, and on the broader soil community. In both field observations and a greenhouse experiment, we found that R. sativus decreased the density of nodules on L. nanus roots. However, in the greenhouse experiment, R. sativus soils only decreased the density of small, likely non-beneficial rhizobium nodules. In the same experiment, R. sativus soils decreased fungivorous nematode abundance, though there was no effect of R. sativus introduction on fungal density. In the greenhouse experiment, R. sativus soils had a net positive effect on L. nanus biomass. One explanation of this effect is that R. sativus introduction might alter the mutualistic/parasitic relationship between L. nanus and its rhizobial associates with a net benefit to L. nanus. Our results suggest that introduced brassicas can quickly alter belowground communities, but that the net effect of this on neighboring plants is not necessarily negative.