2020
DOI: 10.3390/app10093036
|View full text |Cite
|
Sign up to set email alerts
|

Mental Workload Classification Method Based on EEG Independent Component Features

Abstract: Excessive mental workload will reduce work efficiency, but low mental workload will cause a waste of human resources. It is very significant to study the mental workload status of operators. The existing mental workload classification method is based on electroencephalogram (EEG) features, and its classification accuracy is often low because the channel signals recorded by the EEG electrodes are a group of mixed brain signals, which are similar to multi-source mixed speech signals. It is not wise to directly a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
16
2
2

Year Published

2021
2021
2025
2025

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 34 publications
(20 citation statements)
references
References 35 publications
0
16
2
2
Order By: Relevance
“…Moreover, while using the online P300 speller, the users can be tired and their mental workload may affect the classification as well. Thus, mental workload classification of EEG [48] is also planned to be used in future research. The possible usage of a spectrogram representation of the EEG signal is also considered being combined with ensemble learning in the future.…”
Section: Discussionmentioning
confidence: 99%
“…Moreover, while using the online P300 speller, the users can be tired and their mental workload may affect the classification as well. Thus, mental workload classification of EEG [48] is also planned to be used in future research. The possible usage of a spectrogram representation of the EEG signal is also considered being combined with ensemble learning in the future.…”
Section: Discussionmentioning
confidence: 99%
“…For each epoch, Welch's method was used to extract the power spectral density (PSD), and the power of θ (3-8 Hz), α (8-13 Hz), β 1 (13)(14)(15)(16)(17)(18)(19)(20), and β 2 (20-30 Hz) were obtained. Then, seven-channel pairs (P8-P7, O2-O1, C2-C1, P4-P3, PZ-O1, PZ-O2, and O1-AF3) were selected from the left and right brain as well as the front and rear brain, and the energy difference of each channel pair in the θ, α, β 1 , and β 2 bands was calculated as the new feature.…”
Section: Data Acquisitionmentioning
confidence: 99%
“…Besides, there are still some researches on EEG for mental workload detection in complex tasks. Hongquan Qu et al [ 14 ] carried out a three-level Multi-Task Attribute Battery (MATB)[ 15 ] task with 32-channel electroencephalogram (EEG) acquisition. Power spectrum density (PSD) was analyzed with independent components analysis (ICA) algorithm, and the average recognition accuracy reached 79.8%.…”
Section: Introductionmentioning
confidence: 99%
“…Beyindeki bilişsel aktiviteler sonucu oluşan değişimleri algılama hassasiyetinin yüksek olması nedeniyle, EEG sinyalleri zihinsel iş yükü değerlendirmelerinde sıklıkla kullanılan bir yöntemdir [13][14]. Zihinsel iş yükü seviyelerinin çok seviyeli sınıflandırılması üzerine çeşitli çalışmalar yürütülmüştür [15][16][17][18][19]. Wang ve arkadaşları [15], dört spesifik EEG alt bandı için hesapladıkları, entropi, sinyal gücü, morfolojik ve istatistiksel öznitelikleri içeren 658 öznitelikten oluşan öznitelik vektörünü kullanarak, mRMR tabanlı öznitelik seçimi ve destek vektör makineleri tabanlı sınıflandırma sonucu %84 sınıflandırma doğruluğuna erişmişlerdir.…”
Section: Gi̇ri̇ş (Introduction)unclassified
“…Wang ve arkadaşları [15], dört spesifik EEG alt bandı için hesapladıkları, entropi, sinyal gücü, morfolojik ve istatistiksel öznitelikleri içeren 658 öznitelikten oluşan öznitelik vektörünü kullanarak, mRMR tabanlı öznitelik seçimi ve destek vektör makineleri tabanlı sınıflandırma sonucu %84 sınıflandırma doğruluğuna erişmişlerdir. Qu ve arkadaşları [16], EEG sinyallerine bağımsız bileşenler analizi uygulamış; bağımsız bileşenlerine ait güç spektral yoğunluklarını destek vektör makineleri ile sınıflandırmıştır. Bu çalışmada, zihinsel iş yükü seviyesi düşük, orta ve yüksek olmak üzere üç seviyeye sınıflandırılmasında %79.8 başarıya erişmişlerdir.…”
Section: Gi̇ri̇ş (Introduction)unclassified