The ratios of stable isotopes of carbon and nitrogen provide important information on food sources of aquatic organisms and trophic structure of aquatic food webs. For many studies, trophic position and food source are linked to bioaccumulation and trophic transfer of contaminants from prey to predators. In these cases, it is useful to use measurements on whole organisms to make direct comparisons of contaminant bioaccumulation and food web attributes. There is a great deal of variation in methods used for stable isotope analysis, particularly in the selection of tissue type and sample preparation prior to stable isotope analysis. While there have been aquatic studies that examined methodological differences, few have focused on estuarine organisms. In this study, the effects of depuration and tissue dissection on the stable isotope enrichment of common estuarine invertebrates and fish were examined. Homogenized tissues of non-depurated whole organisms were compared to dissected muscle tissue or depurated whole organisms. A 24 h depuration did not change the mean δ15N and δ13C values for most species examined. Additionally, as expected, significant differences in carbon and nitrogen signatures were found when muscle tissues were compared to whole organisms. However, differences were small enough that food source as inferred by δ13C or trophic level as inferred from δ15N would not be inaccurately represented (differences of <1.9‰ for δ13C and <1.2‰ for δ15N). The results of this study suggest that for these common estuarine fish and macroinvertebrates, stable isotopes ratios of samples can be analyzed without depuration in the same way as samples for contaminant analysis, but differences in tissue types must be taken into account when combining data from different sources.