Inorganic cesium lead halide perovskite solar cells have attracted widespread attention owing to their excellent stability relative to organic–inorganic solar cells. However, all‐inorganic perovskite solar cells without hole transport layers and using carbon layers as electrodes have serious energy level mismatch problems. To overcome this problem, here, the CsPbIBr2 surface is treated with 4‐aminomethyltetrahydropyran acetate to form a gradient energy band on the CsPbIBr2 perovskite/carbon interface. As a result, the hole extraction efficiency is successfully improved, and the morphology and crystallization of the perovskite layer are also improved. Moreover, the nonradiative recombination inside the perovskite and the charge recombination at the interface are effectively inhibited. Therefore, the power conversion efficiency of CsPbIBr2 solar cell is enhanced to 10.12%, and the high photovoltage of 1.32 V is obtained under one solar illumination, which are both higher than the pristine one (7.79%, 1.23V, respectively).