Interleukin 12 (IL-12) is considered as an important molecule for cancer immunotherapy with significant roles in hindering tumor activity, mostly mediated by tumorassociated macrophages and anti-angiogenic factors. Mesenchymal stem cells (MSCs) have been come out as promising carriers to increase the accumulation of drug/gene in tumor sites. As a vehicle, MSCs have various advantages, including tumor-specific propensity and migratory ability; however, they have limited transfection efficiency, compared to other cells. In this study, we introduced a novel delivery system based on poly-(amidoamine) (PAMAM) (G5) to deliver a plasmid encoding IL-12 to MSCs. Initially, 30% of the amine surface of PAMAM was substituted by 10-bromodecanoic acid. Then, the low molecular weight of protamine peptide was conjugated to PAMAM and PAMAM-alkyl with N-succinimidyl 3-(2-pyridyldithio) propionate as a linker. Physicochemical properties of this modified PAMAM were evaluated, including size and surface charge, toxicity, transfection efficiency to deliver reporter and IL-12 genes into MSCs and finally the migration potential of the engineered stem cells into cancer and normal cell lines (HepG2 and NIH/3 T3). The results showed that alkyl-peptide modified PAMAM with low toxicity had a higher potential to deliver green fluorescent protein and IL-12 genes to stem cells, than PMAMAM, PAMAMalkyl and PAMAM-peptide. These engineered stem cells had a greater ability to migrate to cancer cells than normal cells. It can be concluded that engineered stem cells containing the IL-12 gene can be considered as an efficient cell carrier for cancer immunotherapy. Further clinical studies are needed to confirm these results.