The increasidng demand for implants due to the aging populations highlights the necessity for applying highly functional coatings on the surface of implants. This study investigates the implications of applying a chitosan/polylysine composite coating on anodized titanium surfaces, aiming for improved biocompatibility, bioactivity, and anti-bacterial properties. Titanium substrates were anodized at 40 volts for a duration of two hours, followed by dip coating with the chitosan/polylysine composite. Fourier-transform infrared (FTIR) analysis was employed to characterize the polymer structure, while field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS) techniques were utilized to evaluate nanotube morphology and the coating structure. Results showed that samples containing 1.5% polylysine exhibited noticeable anti-bacterial properties and cell viability above fifty percent. Subsequent immersion in simulated body fluid (SBF) for a duration of two weeks revealed the formation of apatite crystals on the coated samples, indicating that the samples are bioactive. Furthermore, polylysine contributed to enhanced resistance against degradation in phosphate-buffered saline (PBS) solution. Overall, the chitosan/polylysine composite coating exhibited promising mechanical and biomedical characteristics, suggesting its potential for applications in orthopedic implants.