An adventitious flow field has a great impact on the operational reliability of pumps; therefore, it is important to study pump flow characteristics to reduce the noise, vibration, and cavitation performance of pumps. To study the pressure fluctuation characteristics of the hose pump, a three-dimensional two-way fluid structure coupling model of the hose pump was established. The transient structural module, fluid flow (fluent) module, and system coupling module of ANSYS Workbench 19.0 were used to simulate the unsteady multiple working conditions of the hose pump. The accuracy and reliability of the calculation results from the fluid solid coupling simulation were verified via experimentation. The results show that the roller pass frequency is the main frequency of the pressure fluctuation at the outlet of the hose pump. When the plane of the deformation recovery area is small, the pressure pulsation amplitude is large, and the outlet pressure and speed are large. Due to the irregular backflow of the fluid, stall zones of different sizes form, the outlet pressure is closer to a sinusoid when there is no pressure. The higher the rotating speed is, the faster the pressure roller leaving the hose, the higher the pressure pulsation, and the larger the stall zone. Therefore, the best way to reduce the pressure pulsation in the pump is to optimize the geometry of the pressure roller and change the outlet angle of the hose.